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ABSTRACT A'
We numerically estimate, via Monte Carlo simulation, the expected infinite-horizon

discounted cost d of running a stochastic system; we permit the discount rate to be state

dependent. By exploiting various types of stochastic structure, we beat the naive strategy

of estimating a finite-horizon approximation to d. Efficient estimators are obtained for

systems which are semi-Markov and/or regenerative. These estimators are then ranked

with respect to asymptotic variance as a function of computer-time budget and discount

rate.
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INTRODUCTION
S) In many settings, discounted costs arise naturally. This paper describes simulation

methodologies for estimation of expected discounted costs associated with systems that

exhibit stochastic fluctuations. Such techniques are important for numerical computation

of discounted costs for stochastic processes in which conventional numerical methods either

fail to apply or are inefficient. Examples of such processes include non-Markov processes or

infinite state space Markov chains. The discussion given here of simulation algorithms for

the discounted cost problem also merits interest to the extent that it provides an excellent

vehicle for illustrating several sophisticated *variance reduction* methods for stochastic

simulation. These techniques are more accurately called efficiency increase techniques, as

we shall see.

To formulate the estimation problem mathematically, we let X = (X(t) : t > 0) be a

stochastic process taking values in a state space S. Suppose that f,g are two real-valued

functions defined on S, in which f(z) represents the cost of running X in state z and g(z)
corresponds to the (positive) discount rate in state z. Then

D f exp(-V(s)) f (X(a))ds (1)

is the infinite-horizon discounted cost, where V(s) = fo g(X(u))du. Our goal in this paper is

to construct Monte Carlo simulation algorithms for numerically evaluating d-- ED.

We now describe the layout of the rest of this paper. Section 2 develops a naive estima-

tor for d based on truncation of the infinite-horizon integral, and studies its relevant theory.

In Section 3, an estimator based on randomizing the truncation point is developed, and it

is shown that for large computational budgets, this estimator beats the naive truncation

estimator of Section 2. Section 4 shows how to exploit semi-Markov process structure to

improve the efficiency of the randomized estimator of Section 3 by "conditioning out" the

holding times. In Section 5, an estimator which makes use of regenerative structure is

explored, whereas Section 6 studies an estimator which utilizes both semi-Markov and re-

generative structure to obtain efficiency. Finally, in Section 7, we compare the asymptotic

variances of the above five estimators when the discount rate is small; a small discount rate

is natural in many economic settings. General conclusions on the choice of estimator can

also be found there. Unless otherwise indicated, all proofs are deferred to the Appendix

o make the paper asier tp read., .. .

The table below summarizes features of the five estimators that we consider.



62 63 64 66

truncates Yes No No No No

"conditions
out" hold- No No Yes No Yes
ing times

uses
regenerative No No No Yes Yes
structure

becomes less
efficient as No Yes Yes No No
discount rate
decreases

variance see
per below 63 beats 52 6a beats 64
run

always loses 52,63 always depends on
overall for large lose to 64,64 expected work per
efficiency enough for small run as well

computer enough as variance
budgets discount rate per run;

see text

Efficiency of a simulation algorithm depends on both the time required to generate

observations and their variance. In the setting of continuous-time Markov chains, 68 and 6

are more cheaply simulated than 2 and 64; since they also reduce variance, they are clear
winners for this class of processes. For small discount rates, 6& is always more efficient than

63; for moderate to large rates, no universal conclusion is possible. If the process simulated

is non-regenerative, the discount rate is small, and the computer-time budget is modest,

then 61 probably beats the other estimates. Our mathematical analysis in the following

sections supports these assertions.
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2. A TRUNCATION ALGORITHM

Naive Monte Carlo simulation, based directly on (1), is impractical since generating

the r.v. D generally requires an infinite amount of computation time. A straightforward

alternative truncates the r.v. D at some finite time horizon p, yielding the quantity

D(P) = f exp(-V(.l))fX(.))d.

Given a computational budget t, it is clear that the truncation point 0 should increase

with t. (Observe that a sample mean estimator based on D(P) with p fixed converges to

ED(#), which is in general not equal to d.)

As a consequence, we need to define a sampling plan {8(t) : t > 0), in which 6(t)

corresponds to the truncation point associated with computer budget t. Assuming that

the time required to generate a replicate of D(P) is cip (c, > 0), we find that the number

n(t) of runs completed with budget t is [t/c1P(t)J. Given t, our estimator for d will then be

4 Wt) = {- (D1(P(t)) + D2 (p(t)) +.. + D,,y(j(t))); n(t) _2

0( n(t) = 0 (2)

where D,(.)D n> 1) is a sequence of i.i.d. replicates of D(.).

We now investigate the choice of sampling plan which optimizes the behavior of the es-

timator 6(t). Given the exponential character of discounting, it seems reasonable to expect

that the bias of 61(t) behaves like a exp(-cp(t)) for some constants a, c. This expectation can

be justified when X is a regenerative stochastic process; see Glynn and Whitt (1987). In

any case, it then follows that the mean square error (MSE) of 61(t) is given approximately

by

E(61(t) - d)2 m c1(varD) t U + a2 exp(-2cp(t))

The choice of 6(t) which minimizes the above MSE expression is

P" (t) = AO + A* log t

where A; - - log(ci vat D/2a 2c)/2c, A* = 1/2c.

Theorem 1 below shows that the above approximations can be justified rigorously;

its proof relies heavily on the general theory of replication estimators of the form (2),

as described in Fox and Glynn (1947). The following (reasonable) assumptions will be

needed:

H1. I, g are strictly positive functions on S.

3



H2. 0 < varD < co

H3. b(P) a d - ED(6) - as-0 as c -. oo for some constants a, c.

We require that f be strictly positive merely to simplify the technical statements of the

theorems presented in this paper. It is not necessary and can be replaced by suitable

(cumbersome) absolute integrability hypotheses on I.

Theorem I. Assume H1-H3 and suppose p is defined by (3). Then:

i) If p(t) = r(t), then
ClrD 1/2 N(0, 1).

ii) If P(t)/1,0 (t) -- > 1 as t -- oo, then

(61 (t) - d) =i- rce 2r D / N(0, 1).

iii) If r.(t)/B(t) -* <1 as t - oo, then

Note that part iii) forces the selection p(t) >_ #0(t) for large enough t. On the other

hand, if the constant r. appearing in ii) is strictly greater than one, the variance of the

limiting normal r.v. is greater than that obtained when p = 8°.We conclude that Theorem

1 shows that the asymptotically optimal choice of sampling plan is # = p.

Implementing this choice requires determining a and c. (A glance at the proof of

Theorem 1 shows that in fact c is the crucial parameter, in the sense that if 8(t) = log t/2c+ ,

then convergence result i) always ensues, regardless of the choice of C). Theorem 1 indicates

that if one is to guess a choice for c, it is better to underestimate c than overestimate it.

In particular, suppose that one uses (t) = log t/2c' + f with ' < c. Then, 61 (e) will satisfy

relation ii) with i = c/c'; on the other hand, if c' > c, 61(t) has the poor convergence structure

associated with iii). An underestimate c' of c is always available when A = inf{g(z) : Ex S} > 0,

namely c' = A.

Theorem 1 also shows that even if p is chosen optimally, the best possible rate of

convergence is O(.,/Ao-gti). This is unsatisfactory in comparison to the canonical rate of

O(i/%/t) typical of Monte Carlo simulation. Thus, the straightforward truncation approach

of this section appears inefficient for large computational budgets t, and the investigation

of alternative algorithms is warranted. Heuristic adjustments to p (t) may be appropriate

when the computer-time budget is only moderate.
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3. A RANDOMIZED ESTIMATOR

A principal difficulty in estimating d is that the naive Monte Carlo estimator based on

replicates of D is inadmissible: it requires infinite time to simulate a single observation of

D. Hence, it is clear that one must carefully consider the computational effort required

per observation in order to properly assess the efficiency of an estimator. Hammersley and

Handscomb (1964) proposed evaluating the efficiency of a Monte Carlo procedure via the

formula

Efficiency = (Time) - '. (Variance) - ' (3)

where Time - expected computation time per observation

Variance = variance per observation.

Glynn and Whitt (1986) rigorously justify this criterion. Thus, the efficiency of an esti-

mator may be improved by reducing computation time per observation and/or reducing

variance. An important implication of this observation is that the efficiency of an estimator

may be improved by increasing the variance per observation provided that the computa-

tional time required per observation is appropriately decreased. The estimator proposed in

this section has precisely this property. Specifically, the variance per observation is greater

than that of D, but the observations can be generated in finite time.

Suppose R is an exponential r.v. with mean one, which is independent of X. Set

b(1) fV(r) f (X(t))dt

where V-'(.) = inf{t > 0 : V(t) > .}; we call b(1) a randomized estimator since it involves

adding additional randomness to the probability space. Note that b(1) requires simulating

X only up to time V-'(R), and can therefore be generated in finite time if:

H4. V(oo) =_ f' g(X(t))dt = oo a.s.

When g = a, then EV-I(R) = 1/a and varV-(R) = I/a 2 . Thus, both the expected work per

run and the variance per run are (generally significantly) affected by a.

The following proposition shows that efficient estimation of d can be based on b(I),

since Eb(1) = d.

Proposition 1. Assume HI, H2, H4. Then,

D = E{b(1)IX), so that Eb(1) = d.
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Standard properties of conditional expectation guarantee that varD < varb(1), so that

the variance per observation is increased by using an estimator based on b(i). To analyze

the efficiency of b(1), we will obtain a central limit theorem (CLT) for the corresponding

estimator. Let ((b,(i),V;-1(R.)) : n > 1) be a sequence of i.i.d. copies of (b(1),V-'(R)).

Given t units of computation time, the number of observations generated is

Ni(t) = max(n > 0: c,(V;T'(Rj) +..+ V;'(R,)) _< t)

(disregarding overhead for generating the R.'s) and the estimator 62(t) available after t units

of computational effort have been expended is
2 J { 1 + + i,1 ,(1)); N,(t) > 1

10; NJ (t) = 0. (4)

Theorem 2 shows that 61(t) converges at rate 0(t-/ 2 ); it can also be used, in a straight-

forward way, to obtain confidence intervals for d.

Theorem 2. Assume H1, H4, and Eb(1) 2 < oo. Then,

t1/ 2 (62(t) - d) o- ( var b(i) EV-'()) 12 N(0, 1)

Furthermore, varb(i) = 2fo 7foE(exp(-V(t))f(X(,))f(X(t))}dsdt-d2 and EV'-I(R) =
fo' Eexp(-V(t))}t.

This theorem confirms the efficiency criterion specified by (3), in the sense that the

asymptotic variance of the limiting normal r.v. is precisely the reciprocal of the efficiency

given by (3). In the next three sections, we will describe estimation algorithms that will

increase the efficiency of 6(t) by reducing the variance of b(1) without increasing the

average amount of time required to generate an observation; the improved efficiency will

be obtained by utilizing special stochastic structure in X.

4. DISCRETE-TIME CONVERSION FOR SEMI-MARKOV PROCESSES

In this section, we construct an efficient estimator for d which exploits semi-Markov

process (SMP) type structure; the idea is to eliminate some of the variance in b(1) by

conditioning on the embedded discrete-time process which describes the sequence of states

visited by X. This "discrete-time conversion" is similar in spirit to the estimator discussed

in Fox and Glynn (1986) for estimation of steady-state quantities associated with SMP's.

It "undoes" some of the variance increase due to randomization.
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Specifically, we assume in this section the existence of a discrete-time process Y =

(Y. : n > 0) taking values in S and a strictly increasing sequence of random times {S. n -e 011

such that

H5. i) X(t) = o YII(S, :5 t < S+ ) where So = 0.

ii) (. : n >_ 0) is conditionally independent given Y, where . = .+- S..

iii) P,8p. c edtjY) = F(Y,Y.+,,dt) for some family of distributions F on S x S.

H5 generalizes the notion of SMP, since we do not require here that Y be a Markov chain.

To apply discrete-time conversion, we let N(t) = max(n > 0 : S. < t} be the number of

transitions of X by time t, and set M = N(V- 1 (r)). From HS, we get

f() = f f(X(t))dt + f f(X(t))dt
j=0

- (Y)PY + f(Y)(V-(R) - SM)
j'=0

The "discrete-time" estimator of this section is based on b(2) E{b(1)IY, M}, that is

AM-1

b(2) = f(Y,)E{#IY, M}(i-o (5)

f(Yu)E{V-'(r) - SuIY, M).

Let o(x, y, A) be the Laplace transform of the distribution F(z, y, dt) defined by

Y, A) = 40l00) e--tF(xy t )"

It is easy to show, using a dominated convergence argument, that the derivative '(x, y, A)

with respect to A exists for all positive arguments A. Let {(PkV,) k > 0} be the sequence

defined by
pk= iO(Yk, Yk+1, g(Yk))

'PI p h . Y+I N

With this notation in hand, the next proposition calculates the conditional expectations

appearing in (5), as well as the conditional distribution of M given Y.

Proposition 2. Assume Hi, H4, and ED(1) < oo. Then, for k < m

P(M = mlY} = I' P,(I - P.)
YWO

E(#Aj YM =,,,} -- p,,Io,
E{V-(R) - SM Y, M} = (1 + g(Yu)iPw - 'PM)

g(OY)(1 - VU)
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As a consequence of Proposition 2, we find that

Al-I

L)(2) E f M f(Ylwy~ + f (YU)(+gYp~-P) (6)
3=0 g(YI)(I - VM)

Formula (6) shows that we get b(2) by generating Y up to time M, where M is generated by

using the conditional distribution given in Proposition 2. The following algorithm can be

used to produce r.v.'s with the distribution of b(2); its validity follows immediately from

(6), noting that M is generated by "inversion'.

Algorithm A:

1. Generate a random variate U, uniform on (0,1).

2. Generate Yo.

3. Set m'--0,A-i,r.-0.

Comment: now A = P{M > oJY).

4. Generate Ym+i.

S. Set A .- AV,.

Comment: now A = P{M > m+ I Y)

6. If U > A, then
i) Set D t f (Y.,) "11 1-1,,- r.

Commrt: now M = m

ii) exit

7. Else,

i) set r. -- r + f(Y)v /p.

ii) set m--m+1

iii) go to step 4.

An estimator 63(t) based on a sequence {(b/(2), M,) : n > 1) of i.i.d. replicates of f(2) can be

constructed analogously to 62(t) (see (4)). The estimator 63(t) so defined is a sample mean

of N2(t) observations of b(2), where N2(t) is the number of observations generated in t units

of computer time. To a first approximation, N2 (t) = max{n > 0 : c2(MI +". + Mn) _< t} where

c2 is the computer time required to increment m by one -in Algorithm A. (This disregards

the set-up time to generate M, and the fact that the effort required to execute steps 4 to

7 of Algorithm A depends on the random states occupied at times m and m + i.)

The following CLT describes the behavior of the estimator 63(l), and can be used to

construct confidence intervals for d.



Theorem 3. Assume Hi, H4, and Eb(2)2 < 0. Then,

t /2 (63(t) - d) =* (C2EM. var f(2))1/ 2 N(0, 1)

ast -o.

The proof of this result follows immediately from Section 5 of Glynn and Whitt (1986).

Since B(2) = E{b(1)jY,M), it follows by the principle of conditional Monte Carlo (see Brat-

ley, Fox, and Schrage (1983)) that varb(2) _ varb(i). Thus, the estimator 63(t) is obtained

from 62(t) by reducing the variance per observation. However, as Theorems 2 and 3 point

out, an efficiency increase is obtained only if (c2EM)/(cEV-1(R)) <_ varb(i)/varb(2).

To fully understand this condition, note that varb(1)/varb(2) reflects the degree to

which randomness in b(1) is due to the holding times j6, as opposed to the embedded

sequence Y. On the other hand, the ratio C2 EM/cIEV'(R) describes the complexity of

generating a b(2) observation relative to a b(i) variate. Observe that both types of obser-

vations require generating Y up to time M; the difference is that b(i) additionally requires

generating the holding times fli, while b(2) involves the Laplace transform quantities y

and p. If the F(z, y, dt)'s are distributions having Laplace transforms that are easily nu-

merically evaluated (as is the case with gamma r.v.'s, for example), then the (possible)

increase in effort involved in passing from b(1) to b(2) should be modest; in these circum-

stances, 63(t) is more efficient than 62(t). For a more detailed comparison of "discrete-time"

estimators with their "continuous-time" analogs, see Section 2 of Fox and Glynn (1986).

5. ESTIMATION FOR REGENERATIVE PROCESSES

We assume now that X is a (possibly) delayed regenerative process with regeneration

times 0 < To < T, < ... (If X is non-delayed, set To = 0.); thus, we do not require in this

section that X satisfy the semi-Markov hypothesis H5. The independence of regenerative

cycles implies that

d = EA(O) + EC(O)EK(0) (7)

where

A(i) = f exp (- f g(X(T_ I + s))ds) f(X(T -I + t))dt

C(i) = exP N r- 9o (X(T -I + t))dt .

K(i) =f exp j (X(T,... + a))da) f (X(T + t))dt

9



and ; = T - T,.. A similar analysis of EK(O) shows that

EK(O) = EA(1) + EC(1)EK(1).

But K(1) has the same distribution as K(o) by the regenerative property, so EK(O) = EK(1).

We conclude that EK(O) = EA(1). (1 - EC())-'. Substituting into (7) yields

d = EA(O) + EC(O)EA(1) (1 - EC(1)) - ' .  (8)

Equation (8) suggests that d can be estimated by simulating regenerative cycles. Since

each regenerative cycle can be generated in finite time, independently of g, we will avoid

the problems inherent in trying to generate D explicitly, or, when the discount rate is small,

in randomizing as in Sections 3 and 4. (See also Section 7.) In the discounting context, it

is important to allow the possibility that X is a delayed regenerative process (as opposed

to steady-state simulation). For example, if one is asked to compute the discounted cost

for a Markov chain initiated with a distribution concentrated on more than one point, this

generalization would be required.

Since (8) involves two different types of cycles (delayed and non-delayed), it offers the

possibility to stratify the computation effort so as to maximize the efficiency of the resulting

estimators. Given a computational budget t, we allocate a proportion p to generating pairs

(C(o), A(O)) and a proportion q = 1-p to simulating the pairs (C(1), A(1)) from the non-delayed

cycle. An estimator 64(t) is then obtained by substituting the resulting sample means in

(8).

To be precise, let {(C¢(i), A.(i), ai) : n > 1 (i = 0, 1) be two independent sequences of i.i.d.

random vectors where (C,(i), An(i)) shares the same distribution as (C(i), A(i)), and where

rn represents the length of the corresponding cycle used to obtain (CO(i),An(i)). Thus, if

we set po = p,p, = q, then N'(t) = max{n > 0 : c(ri + + r. ) _< pit} is the number of type

cycles completed by time t. Put

(C(), At(i)) = fN(9) ((C1(i),AI(i)) + + (CN.t)(i),ANs,)())) ; N'(t) > 1

,0: Ni(t) = 0.

Then, the estimator 64(t) is given by

64(t) = At(o) + C,(0)At(1) (1 - ¢,(1))

To analyze the behavior of this estimator, we derive a CLT for 64 (t). (Again, this can also

be used to produce confidence intervals for d.) We require that:
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H6. Er, < o (i - 0, 1).

Theorem 4. Assume HI, H2, and H6. Then, for 0 < p < 1,

1/2 (2,(t) - d) =1 (oo/p + 0 I/qN(O, 1)

as t -* co, where
a= 2Cvr(A(0) + C(O) . K(1)) Ero

= (1 -EC(1)2 vr(A(1) + C(1) EK(1)) Er,.

To optimize the performance of 64(t), we select p to minimize the asymptotic variance

term ar2/p + o2/q. It is easily verified that the minimizer is given by

p" = ao(0o +al) -,

(provided ao + a, > 0) where a', : v,, in which case the corresponding variance is (ao +

a1)2. To compare the efficiency of the estimator with the previous ones, in particular

the truncation estimator, it is useful to relate the coefficients defining a 2 and o,2 to var D

appearing in Theorem 1.

Proposition 3. Assume Hi and H2. Then

EC(0)2
yarD = var(A(0) + C(0) EK(1)) + 1 EC()2 var(A(1) + C(1) EK(1)))

To aid in comparison, note that EC(0)2 > (EC(O)) 2 and E(1 - C(1) 2) > (1 - EC(1)) 2 . (For the

second inequality, 0 < C(1) < 1 so EC(1) > EC(1)2 . Hence 1 - EC(1) < 1 - EC(1)2 . But since

0< EC(1) !5 1, (1 - EC(1)) 2 < 1 - EC(1).) In the non-delayed case where C(O) = 1, A(O) = 0, we

choose p = 1 (obviously). Theorems I and 4 then suggest that

logt (1 - EC(1)) 2  (9)

var6,(t)/var64 (t) ~ 2bEr, (I - EC(1) 2 )(

We conclude that if t >> exp(2bEri), it is better to use 64(t).

6. ESTIMATION FOR REGENERATIVE SEMI-MARKOV PROCESSES

In this section, we illustrate how the methods of Section 4 and 5 can be combined to

obtain an estimator 6s(t) which exhibits the best features of 63(t) and 64(t). In particular,

65 (t) exploits the regenerative structure of X while "filtering out" the variance in 64 (t) due to

holding time randomness; the latter property is achieved by using discrete-time conversion.

Returning to the set-up of Section 3, we now assume that the embedded sequence Y is

regenerative. Thus, we require that Y possess regeneration times 0 < Uo < U < and set

11



U- = o, 9j = Ai - U,-. By the conditional independence of the P-'s given Y, it follows that

the random times T, = Su, are regeneration times for X. Hence, (8) is valid for the Vi's; as

an immediate consequence, we obtain the identity

d = EA(0) + Ee(O)E1A() (I - Ee(j))-  (10)

where I(i) = E(A(i)IYI, 6(i) = E{C(i)IY}. To compute the conditional expectations appear-

ing in (10), observe that

(U,-1 '
E(C(i)Y} -E fI exP(-g(Y3' ))Y

U,-I

i-Ui-'

and

E{A()IY)=E H _s exp (- Jo g(X(T-l + ()d) ')"YIY

=f exp(-g(Y,)t)dtf'(Y) IY
I h OtJo )=U *1j'*_ 1(Y)oU,-I jf-1

-II ll (I) V
j=Ui- k= OO"' "

Given the above formulas, it is straightforward to generate the pairs (6(i), A(i)) by simu-

lating the sequence Y. As in Section 4, the computational effort may be assigned so that

a fraction pi of the total time t is delegated to generation of pairs (&(i),A(i)), (i = 0, 1). An

estimator 65(t) can then be constructed analogously to 64 (t).

We can derive a CLT for 6s(t) which describes its convergence and can be used for

confidence interval estimation; the proof is analogous to that of Theorem 4 and is therefore

omitted. The result (Theorem 5 below) assumes that the computational effort required to

generate (c5(i},A( 1 )} is c30,. The constant c3 reflects the difficulty of simulating the chain Y

and numerically evaluating the pi's (we do not assume that c2 = 13 since the discrete-time

algorithm of Section 4 also involves numerical evaluation of the derivatives of the Py's,

which may be harder. For continuous-time Markov chains, however, both ,. and 91 have

simple closed forms.)

H7. En < oo (i =o,1).

Theorem 5. Assume HI, H2, and H7. Then, for 0 < p < 1,

026t)- d) 1 Isp a/) 112 N(o, 1)

12



as t - 00, where

a2 = ,3 -var(E{A(O) + C(O) EK(1)jY}) • Ejo

612 = C( EC" ) 2 var(E(A(1) + C(1) EK(1)IY)). Etql.

The principle of conditional Monte Carlo again guarantees that 502 0 , < a2; the

amount of variance reduction depends on the extent to which the randomness of D is due

to the holding times. As an immediate consequence, we find that if cEr1 P csEqh, 65 (t)

is more efficient than 64(t). The following proposition relates &2 and 2? to var(E{DIY}); its

proof is similar to Proposition 3 and is omitted.

Proposition 4. Assume HI and H2. Then,

var(E{DIY}) = va(A(O) + 6(O) • EK(1)) + EC(0)2  vat(,(1) + d(l) • EK(1)).

1 - EC(1)2

This result can be used to compare the efficiency of 61(t) to 66(t) when Y is non-delayed.

By arguing as in (9), we find that

var 61(t) log t . ci var D. (-EC(1)) 2

var 66(t) 2bE 1, cs var(E{DIY}). (I- Ed(1)2)"

Here, we find that if t :X exp(2bcsEql1 var(E{DIY})/(varD " cl)), 6r(t) is more efficient then 61 (t).

7. ANALYSIS OF EFFICIENCY FOR SMALL DISCOUNT RATES

In this section, we study the relative efficiencies for small discount rates of the methods

considered above. Smallish discount rates arise naturally in many economic contexts (e.g.

low inflation rate settings) and a considerable literature has developed on this topic. (See,

for example, Veinott (1969) or Whitt (1972).)

To make our analysis precise, let

V.(t) = a fg(X(s))ds

where g does not depend on a and set d(a) = ED., where

D. = f exp(-V.(t))f(X(t))dt.

We are interested in the efficiency of our five estimators for D(a) when a is small. Given

Theorems 1 through 5, we examine the asymptotic behavior of the scaling constants ap-

pearing in front of the limiting normal r.v. These scaling constants determine the width

13



II:

of the confidence interval associated with a given method, and consequently one wishes to

choose estimators for which the scaling constants are as small as possible.

Our subsequent mathematical analysis requires:

H8. X is a (possibly) delayed regenerative process with regeneration times
0:_ To < T, <...

H9. E(Y,(f)' + y,(g) 4) <co (s = 0,1), where

(/ = f(X(o))dx

(g M g(X(o))dz

and T-1 =0.

Although the results stated here require the regenerative structure for the proofs, it seems

likely that the same asymptotic behavior holds for more general classes of processes. This

belief is supported by some of the more general limit theorems appearing in Glynn and

Whitt (1987).

To state the following theorem, we add an a-dependence to all the r.v.'s and constants

appearing in Theorems 1 to 5. For example, b.(1) is defined as

0l f (X(t))dt.

Theorem 6. Assume H1-H8. Then:

(a) d(a) - I_

(b) var D. ~ 2

(c) C(a) ~a r(g)

(d) var b()
(e) EV;-'(R)~- (r(g))

- 1

(f) varb. (2) ~

as a 10O, where r(f) = EY 1(f)/Er1 ,r(g) = EYI(g)/Eri,

(g = (r(g)Y() - r(f)Yj(g))
(h) E() (

2 = var(Er(g)Y1(f) -r()Y,(g)jY}) 1

Er, r(g1 "

14



Given a computation budget of (at least) moderate size t, the above theorem tells us

that if the discount rate is small, then we can expect that

logt C, a 2

t a2W 4r(g)
1 c r2(f)

1a 63()w C2  r2 (f ) Etli

1 c, a2

v6, (t) rd I C &2E17
IT2c 7-g) Er1

Assuming that cjEv, !5 cEr 1 for j = 2,3 (i.e. the cost of simulating a regenerative cycle in

discrete time is less than or equal to the cost of simulating a cycle in continuous time),

the above analysis suggests that we can order (for small discount rates) the estimators in

order of decreasing preference as follows: s6 (t), 4 (t), 6, (t), 63 (t), 62 (t).

For larger discount rates, we would expect that the log t term in var6,(t) would dominate

the additional factor of 1/a appearing in var 62 (t) and var 6s(t). Thus, for larger discount rates,

we recommend using the estimators in the order 6s(t), 54 (t), 63(t), 6 (t), 61(t). This is a heuristic

analysis, however, and for a given budget t, there may be some realignment in this order.

The above results also show that the discounting problem does not get harder as

a 1 0, provided that we take advantage of regenerative structure. Suppose that we wish

to construct a 100(1 - 6)% confidence interval for d(a) with half-width equal to e% of d(a).

If the estimator d4(t) is used, the computational effort t(a) required for this relative width

confidence interval is given approximately by

() M 2(6)& 2C EIr(g)
C 2Enrj r(f)2

where z(6) solves P{N(0, 1) 5 z(6)} = I - 6/2. Since the right-hand side does not depend on

a, this shows that the discounting problem does not get harder, in a relative error sense,

as the discount rate is driven to zero. This is in contrast to the problem of estimating

steady-state queue-length in heavy-traffic, where the relative error problem does get harder

as the traffic intensity increases to one (see Whitt (1987)).

15



APPENDIX

Proof of Theorem 1. First, observe that the positivity of f shows that the bias b(p) is

positive for all p. Furthermore, by H2, it is evident that b(p) converges to zero as # -- 0,

and thus a and b must be positive finite constants.

We now apply the results of Fox and Glynn (1987) to obtain the theorem; it is easily

checked that their hypotheses are in force. Their Proposition I states that 6(t) -- oo as

t -. co is necessary for consistency of 61(t), while their Theorem 2 proves that

q(t)(6 1(t) - d) =o N(O, 1) + ' (Al)

as t -. oo, where q(t) = (t/clp(t)varD(fl(t))1/2 , and -y = limt-. q(t)b(f(t)). Since 0(t) -c c, it is

evident that

varD(P.(t))/varD --* 1 (A2)

as t -- oo. Furthermore,

b(16(t)) . aexp _C(P(t) - 1 1.
t'/2b(a(t)) = aexp(-cf(t)) 2 log t) .(A)

Hence, if 0(t) = /'(t), it follows that t'/ 2b(#(t)) converges to a finite constant, so that -y = 0;

part i) is then obtained by using (Al) and (A2). Similarly, for part ii), tl/ 2b(p(t)) -. 0 so

that -y = 0 and the result again follows immediately from (Al) and (A2). Finally for iii),

(A3) shows that for e sufficiently large,

t'12b((t)) _ %exp [ (1 - x)log t -= (l-.)/4

so that - = oo, yielding the result.

Proof of Proposition 1. We can write f)(1) as

b(I) =T I(V-'(R) > t)f(X(t))dt

= I(R > V(t))f(X(t))dt.

The result then follows from Lemma 1 below, by noting that the independence of X and

K proves that E{I(R > V(t))f(X(t))IX) = f(X(t))P{R > V(t)jX) = f(X(t))exp(-V(t)).

Lemma 1. Let Z be a nonnegative process on a probability space (0, 7, P) such that

Efo Z(t)dt < oo. If 9 is a sub-a-field of 7, then

Efco Z(t)dtl9) = O E.Z(t))dt .

16



Proof of Lemma 1. We use the defining relation for conditional expectation, as given

on p. 298 of Chung (1974). Note that fo E(Z(t)l9}dt is a 9-measurable r.v. such that if

A E 9,
E (f E(Z(t)l}dt. I(A)) = f E((A)E{Z(t)19))dr

= O E(I(A)Z(t))dt

= E (zo Z(t)dt-. (A));

the first and third equalities use Fubini's theorem, whereas the second follows from the

defining relation for E{Z(t)l9. We have therefore demonstrated that f'o E{Z(t)19}dt satisfies

the defining relation for E (fo Z(t)dtl9), proving the result.

Proof of Theorem 2. The CLT for 62(t) follows immediately from Section 5 of Glynn

and Whitt (1986). For the expression for varb(1), note that

Eb(1)2 = 2E fV 1 (R) Z t f (X(s))f(X(t))dsdt

= 2E f j I(R > V(t))f(X(a))f(X(t))ddt}

= J'" { E{I(R. > V(t))f(X(o))f(X(t))dadt}.

But E{I(R > V(t))f(X(a))f(X(t)IX} = f (X(8))f(X(t)) P(R > V(t)} = f(X(s))f(X(t)) exp(-V(t)J,

yielding the formula. A similar proof gives the expression for EV-(R).

Proof of Proposition 2. For the first formula, note that
P(M 2! mIY) = P{V-'(R) > SmIY}

= P{R > V(S.)IY}

= E{P{R > V(S,)IX}IY}
= E{exp(-V(S,))IY}

= I- E{exp(-g(Y,)$ 3 )IY}
j=0
Y-I

= fi (Yj,Yj'+ 1 ,g(Yj)),

from which the result follows. For the second expressioh, observe that E{jIY, M = m} =

Ejlhl(M = m)IY}/P{M = mY). To analyze the numerator, note that for k < m,

E{0h1(M > m)IY} = E{E{41(R > V(Sm.))IX}IY)

= E{P. ep(-V(.S.))IY}
rn-i

17



so that E(,hI(M = m)IY) (1- ,) • 7[ l P-i. This, when combined with the first

formula, yields the second identity.

The proof of the third formula follows a similar pattern. We write

E{V- 1 (R) - SMIY, M = m} = E{(V- 1 (R) - Su)I(M = m)IY)/P{M = m[Y); again, we handle the

denominator using the first formula. For the numerator, we note that E(V-(R)I(M = m)[Y)

can be expressed as

jo P(V(R) > t;M = mIY)dt (M)

=/o'P{R> V(tl;R > VS,jIYjdt- fo P.R > Vltl;R > VS,.+j)jY~dt (4

By conditioning on X, we find that P{R > max(V(t),V(S))[Y} = E{exp(-max(V(t),V(S$))JY}.

So by Lemma 1

/O P(R > max(V(t), V(S))IY}dt = E {fo" exp(- max(V(t).V(Sk)))dtI (5)

= E{Sk exp(-V(S))Y} + E { h OexP(-V(t))dtY}.

On the other hand, E{S.I(M = m)IY)=E{SI(V(S.) < R < V(Sm+i))IY} =

E{Sm(exp(-V(S.)) - exp(-V(S,.+i)))Y}. Combining this with (A4) and (A5) shows that the
numerator equals

E {OXPU-V(Sm)) (f"exp(-g(Ym)t)dt - P.n exp(-g(Yrn)fl)) ii'
rn- 1" , 1 -. +

i=O

Dividing by the denominator gives the third formula.
Proof of Theorem 4. Standard weak convergence arguments prove that

64 (t) = IAt(O) + '0t(0)EK(1)] + 'EC() (At(1) - EK(1)(1 - C(,1))) + o,(t - I 2 )

where op(t-'/ 2 ) represents a process x(t) such that tl/2X(t) =o o. The random time-change
results of Section 5 of Glynn and Whitt (1986) can now be applied to the bracketed terms
above to obtain the result. (To show that the respective variances are finite, see the proof
of Proposition 3.)
Proof of Proposition 3. The regenerative structure of X proves that (I denotes equality

in distribution)

D-A(O) + C(O)K(1)

18



where (A(o), C(o)) is independent of K(1). Squaring both sides and taking expectations, we

get

ED2 = EA(O) 2 + 2EA(O)C(O)EK(1) + EC(O)2 EK(1)2 . (A6)

Since all terms on the right-hand side are positive, we see that H2 implies the finiteness of

all the quantities appearing there. We apply the same analysis to K(1):

K(1)LA(1) + C(1)K(2).

Using the fact that K(2):-K(1), we get EK(1)2 
- (EA(1) 2 + 2EA(1)C(1) -EK(1))(1 - EC(1) 2) - '.

(EC 2 (1) < I by H1). Substituting this into (A6) yields the result, after algebraic simplifica-

tion.

Proof of Theorem 6. For a) we use (8) and let a 1 0. A Taylor expansion gives

A, (O) -o exp(-aV(t))f(X(t))dt

To - V(t) + 2V2(t)e'Vs] f(X(t))dt

where-y =-y(a) E (0,a). Since V2 (t)exp(-y(a)V(t))f(X(t)) < V2 (r)f(X(t)) uniformly in a and

V2 (r)f(X(t))dt = Yo(f)Y0(g) 2

is integrable by H9, it follows from the dominated convergence theorem that

EA.(O) = EYo(f) - aE V(t)f(X(t))dt + -E V2(t)f(X(t))dt +'o(a2). (A7)

Similarly, one can show that
e2

EC.(O) = 1 - aEYo(y) + -EYo(y)2 + o(a2).
2

Corresponding expressions for EA.(1) and EC.(1) lead immediately to a). For b), h), i), we

use Propositions 3 and 4 and arguments similar to the above. Relation c) can be found in

Glynn and Whitt (1987).

For e), observe that

V- (R)-L. (O) + I.(O)Q.(1) (A8)

where L,(0) = V;'1 (R) A To,1.(0) = I(V;'(R) > TO),Q.(1) = V;'I(r) - To, and (L,(0),1a(0)) is

independent of Q.(1). Furthermore, on (V;I(R) > To},

Q.(1)-L.(1) + I.(1)Q.(2) (A9)

19



where L,(1) = (V;-(R) AT,) - To, I.(1) = I(V;'(R) > TI),Q (2) = V 1 *(R) - T,,(L,(1),18 (1)) is

independent of Q.(2), and the distribution of Q.(i) conditional on {V;I(R) > T} is indepen-
dent of i (i = 0, 1). Taking expectations in (A8) and (A9) and using the independence leads

to an expression similar to (8). One then expands the expectations in a manner similar

to (A7) to obtain e). Results d), f), and g) are proved using decompositions analogous to

(A8) and (Ag), followed by Taylor expansions for small a.
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